
International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 04, APR, 2025

ISSN No: 2250-3676 www.ijesat.com Page | 266

AI-Powered Code Review Assistant with GPT-4–Used GPT-4 to

suggest improvements in Python code

A. Vamsi1 B. LalithaBhavani2, B. DileepKumar3, B. Prasad4, A. Meghana5
1,3,4,5 Final Year Student, Department of Information Technology, Sir C.R.Reddy College of Engineering, Eluru

2Assistant Professor, Department of Information Technology, Sir C.R.Reddy College of Engineering, Eluru

Abstract

In software development, it is crucial to have high-quality code. The AI Powered Code Review

Assistant leverages GPT-4 to automate and improve the code review process for Python, making

it much more efficient and accurate. The assistant can be easily integrated with widely used IDEs

such as VS Code and PyCharm, and version control systems like GitHub and GitLab. It offers

instant feedback, enabling the developers to pinpoint and fix syntax errors, adhere to coding

rules, and minimize performance as code is being written. Main aspects of the assistant are syntax

and structural checks, which identify syntactic issues such as indentation bugs and incorrect

import statements, and semantic checks, which check for logical errors and provide suggestions

to improve performance. It also helps improve code security by reporting potential vulnerabilities

such as hardcoded passwords and SQL injection attacks. The assistant encourages following best

practices by implementing coding guidelines like PEP 8 and suggests improvements to

readability and maintainability of the code. It also utilizes an interactive query chat interface,

where developers can request clarifications and optimization advice from the AI itself. Through

repeated learning from interactions with developers and feedback, the assistant optimizes its

recommendations for relevance and minimizing false positives. This new tool is a landmark in

automated code review, and it will drive improved code quality and productivity for Python

development.

I. Introduction

In today's fast - moving software development, having a high-quality codebase is important

for project success and team productivity. Code reviews are an essential practice that aids in

preventing code quality defects, following standard practices, and catching defects early. Yet,

conventional manual code reviews are time - consuming, unreliable, and subject to human

mistakes, particularly with increasing codebase complexity.To solve these problems, we

introduce an AI-Powered Code Review Assistant that uses GPT-4, a cutting-edge language

model, to streamline and augment the code review process for Python

programming.Throughintegration with popular Integrated Development Environments (IDEs)

and version control systems, this assistant gives instant feedback, allowing developers to

catch and fix errors while coding.

The AI aid conducts thorough analyzes of Python code, such as syntax checking,

semantic analysis, and logical reviews. It flags typical problems such as syntax problems,

inefficient codes, and security flaws, recommending fixes based on proven best practices.

This pro-active process not only simplifies the code reviewing process but also promotes a

quality and security-driven culture among development teams.

 Moreover, the assistant also stresses following coding standards, like PEP 8, to

maintain consistency throughout the codebase. Automating the review process allows

developers to concentrate on creative problem-solving and feature implementation instead of

being bogged down in manual review work.

Recent breakthroughs in artificial intelligence, and more specifically large language

models like GPT-4, have made powerful uses in software development possible, such as

automated code review. GPT-4, created by OpenAI, exhibits a high-level ability in code

understanding and code generation, making it an appropriate tool for activities like code

optimization, bug identification, and providing best practice suggestions. Studies indicate that

tools powered by AI for code review can lower human effort dramatically while keeping or

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 04, APR, 2025

ISSN No: 2250-3676 www.ijesat.com Page | 267

even enhancing code quality. Such tools

examine code in context and suggest not just syntax corrections but also improvements

in logic, performance, and coding standards. Research also points to the value of GPT-4 in

producing rationales for its suggestions so that developers can see how and why the changes

improve the code. Overall, incorporating GPT-4 into code review tools has the potential to

deliver significant productivity and assurance of software quality.

ProblemStatement

Code review and security are issues for software development teams because of slow,

labor-intensive manual checks and static code tools without contextual intelligence. An AI

code review assistant with GPT-4 can fill this void by giving context-aware, real-time feedback

and recommending improvements. It enhances code quality, security checks, and lessens

manual labor. Challenges are ensuring precision, keeping false positives low, and effortless

integration. Ongoing learning from customer feedback improves the recommendations of the

assistant and adjusts to changing standards.

Existing System

Simple static analysis tools have severe limitations that impact developer productivity and

code quality [1,2]. They are context-insensitive, frequently failing to detect complex bugs and

logical flaws. Since they use fixed rules, they are rigid and cannot respond to changes in

coding practices, resulting in false positives and irrelevant suggestions. Feedback tends to be

delivered late in the development process, which postpones issue detection [3]. Moreover,

manual configuration needs can lead to inconsistencies between projects [13]. These

limitations emphasize the necessity for more intelligent and adaptive code review tools

Utilizes GPT-4 for context-aware suggestions and improvements in Python code.

Algorithms Used in the Existing System

Manual Content Writing: In human code review, algorithms are usually not formally stated,

as the method is dependent on human judgment and experience to analyze code quality [4].

Reviewers use heuristic methods based on experience, finding problems by pattern recognition

and knowledge of coding standards

Basic Static Analysis Tools: Simple static analysis tools mostly use rule-based algorithms to

enforce coding rules and detect possible problems in the code[5]. The algorithms use a

predefined set of rules that dictate acceptable coding standards, including naming conventions

and layout rules[6,7]. Other tools use pattern-matching technology to identify frequent

programming mistakes, including unused variables or unreachable code[12]. Moreover, control

flow analysis algorithms are used to study the code paths that code execution can follow to

assist in spotting potential logical bugs.

1. ProposedSystem

The system suggested is an AI-driven Code Review Assistant based on GPT-4 to enhance

Python code review. It gives real-time, context-specific feedback, detecting errors and

vulnerabilities in real time. Unlike static analysis tools, it provides context-specific suggestions

and optimizations. It also enforces coding standards uniformly. This minimizes false

positives and overall code quality improves.

AlgorithmsUsedintheProposed System

1. GPT-4 Natural Language Processing: Utilizes GPT-4 for context-aware suggestions

and improvements in Python code.

2. Fine-Tuning Techniques: Applies fine- tuning on GPT-4 with domain-specific

datasetstoenhancerecognitionofPython patterns and best practices.

3. Static and Dynamic Analysis Algorithms: Combines static analysis for code structure

with dynamic analysis for runtime behavior assessment.

3. Anomaly Detection Algorithms: Identifies unusual coding patterns that may indicate bugs

or security vulnerabilities.

4. Reinforcement Learning: Adapts suggestionsbased ondeveloperfeedback, improving

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 04, APR, 2025

ISSN No: 2250-3676 www.ijesat.com Page | 268

recommendations over time.

Methodology

1. Code Input & Preprocessing

Objective: Preprocess user-entered Python code for smart analysis.

Process: Python users copy and paste, or upload, their code through a Gradio-based

interface.Code is scanned for syntactic correctness using Python's internal modules (ast or

tokenize).Large scripts are split to contain within GPT-4's input capacity without disrupting

code sequence and code meaning. Cleaned, organized code is now ready for analysis by

GPT-4.

2.GPT-4-Powered Code Review & Recommendations

Objective: Apply GPT-4 to identify problems and suggest corrections.

Process: GPT-4 is fed with prompt engineering requesting analysis in line with software

engineering principles.GPT-4 examines for bugs, code smells, performance hotspots,

readability concerns, best practices. it provides natural language recommendations with an

explanation of what to repair and why, so it's simple for the user to perceive and implement

the modifications.

3.Multi-Layered Feedback with Visualization

Objective: Integrate GPT-4 feedback with static tools and display results nicely.

Process: Static tools such as pylint, flake8, and radon are executed to introduce rule-based

checks and complexity metrics.GPT-4 feedback is blended with these tools to include a

wholesome review.Feedback at the end is displayed through visual dashboards, featuring

code blocks with annotations and plots (with matplotlib or seaborn) to mark areas such as

complexity, style errors, and GPT-4's recommendations.

Technologies

The AI code review tool takes advantage of GPT-4's deep learning mechanisms to

read and comprehend Python code. It utilizes the ast module in Python to do structural

analysis, allowing it to detect code patterns and likely errors[8]. Such analysis is then

supplemented with interfacing with style and error check static analysis tools. The code is

then passed to human-understandable recommendations through API integration into

developer interfaces for the sake of enhancing the quality, performance, and readability of the

code. Room for fine-tuning and ongoing learning enables the assistant to learn and improve

its feedback over time.

1. GPT-4astheCoreIntelligence

The AI-Powered Code Review Assistant leverages GPT-4 as its core intelligence to analyze

and enhance Python code. GPT-4 suggests improvements in code quality, readability, and

performance based on best practices. It acts as a smart reviewer, offering context-aware

feedback and optimization tips[14].The AI-Powered CodeReview Assistant utilizes GPT-4 as

the core engine to evaluate and refine Python code. It analyzes syntax, logics

GPT-4(OpenAIAPI)

Used as the core intelligence to understand and review Python code. It provides context-aware

suggestions for improving code readability, logic, and performance.

Python
The primary programming language used for both the code being analyzed and the

development of the assistant itself due to its simplicity and ecosystem support.

pylint&flake8

Static code analysis tools used to catch syntax errors, PEP 8 violations, and common coding

issues before passing the code to GPT-4 for deeper insights.

Gradio

Provides a simple and interactive web interface for users to upload code, view GPT-4's

feedback, and interact with suggestions in real time.

Mat plot lib & Sea born

Visualization libraries used to display code quality metrics, issue frequencies, and

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 04, APR, 2025

ISSN No: 2250-3676 www.ijesat.com Page | 269

improvements over time in an intuitive and graphical format.

GitHubAPI
Integrates GPT-4's suggestions directly into pull requests, enabling seamless adoption into

existing developer workflows and collaboration platforms.

Pandas

Utilized for data handling and analysis of code metrics, issue logs, and user feedback to refine

the review process.

Streamlit(optionalalternative)

Can be used to build a more dashboard-like interface for tracking suggestions, performance

metrics, and system updates.

GPT-4 is based on the transformer neural network architecture, which excels at understanding

and generating sequential data like code and text.

2.Python Code Parsing and Abstract Syntax Trees

 Python's built-in module ast is responsible for parsing Python source code into an

Abstract Syntax Tree (AST). An AST represents the structure of the code as a hierarchical tree,

which is simpler to analyze and interpret with AI.

3.CodeAnalysisandImprovementLogic

Tools like pylint and flake8 can be integrated to perform static analysis, identifying

code style violations, potential bugs, and other issues.

2. User Interface and Feedback Presentation

The interface can provide interactive features, such as the ability to accept or reject

suggestions, provide feedback on the AI's performance, and customize the code review

process.

Modules

A GPT-4-powered AI code review assistant comprehensively knows the structure and

meaning of Python code to detect potential issues. It then recommends enhancements that

include style, performance, security, and maintainability, as well as assists in testing. This is

presented in an easily understandable format and integrates with development tools with the

ability to learn and adapt to particular coding styles.

1.Code Analysis and Understanding

 Code analysis encompasses analyzing a program's structure, logic, and performance to

look for problems and enhancements. Analysis optimizes efficiency, readability, and security.

Through knowledge of the code, developers are better able to diagnose bugs in advance and

optimize software for improved maintenance.

2.Suggesting Improvements

Code review tools with AI, such as those based on GPT-4, provide recommendations

for improvement by checking code for performance, security, and readability. They propose

more efficient algorithms, point out bugs, and provide for compliance with best coding

practices. They also flag security issues and propose corrections for vulnerabilities in the

code, for example, input validation or proper exception handling.

3.InteractionandFeedback

Feedback and interaction in AI-driven code review tools are through a dynamic process where

real-time suggestions and improvements are given to developers on their code. The assistant

reads the code, marks areas that can be optimized or improved for security, and provides

actionable feedback. This constant interaction assists developers in improving their skills,

coding cleaner, and following best practices.

SoftwareDesign

The Python code review assistant based on AI is designed with a modular structure for

scalability, having separate modules for GPT-4 API integration, parsing of code, static analysis,

and suggestion generation. A clearly defined API facilitates smooth communication, while data

structures and caching ensure performance optimization. The system focuses on concise

feedback in IDEs and VCS platforms, allowing extensibility and testability. GPT-4 integration,

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 04, APR, 2025

ISSN No: 2250-3676 www.ijesat.com Page | 270

including prompt[8].

engineering and fine-tuning, delivers accurate, relevant code improvement suggestions.

1. Modular Architecture

The modular design of an AI-powered code review system separates functionality into separate

components to improve maintainability and scalability. Each module processes specific

functions, like GPT-4

 API integration, code parsing, static analysis, and suggestion generation. This

organization facilitates easy updates, debugging, and improvements without interfering with

other aspects of the system. It also provides flexibility, allowing for the addition of new

features or integrations as necessary.

APIDesignand Interfaces

The API architecture of an AI-driven Python code review tool emphasizes smooth integration

across a range of IDEs and VCS systems through standardized data formats for exchange.

Endpoints for submitting code, getting suggestions, and error reporting are provided. The

interface is designed for strong scalability and maintainability with support for module-level

interaction with items such as GPT-4, parsing of code, and static analysis tools. Extensive

documentation and concise error messages improve developer usability and integration ease.

Implementation

 The deployment includes the integration of the GPT-4 API with Python code parsing

modules based on Abstract Syntax Trees (AST). Static analysis plugins are included to

identify problems, while GPT-4 produces improvement recommendations based on prompt

engineering. These recommendations are provided through IDE or VCS plugins, providing

real-time feedback. Efficient caching and error handling provide smooth performance and

stable user experience.

1.Setting up the Development Environment

 Install Python with necessary libraries such as openai, ast, and pylint or flake8 for code

inspection. Install an IDE such as VS Code or PyCharm with appropriate extensions and GPT-4

support. Handle API keys securely and utilize Git for version control and collaboration.

2.ImplementingtheModularArchitecture

 The modular design is achieved by dividing components into separate modules like

code parser, GPT-4 handler, static analyzer, and suggestion engine. They communicate through

an established interface so that it is flexible and maintainable. This format facilitates

independent development, testing, and scalability of individual components.

3.ImplementingCoreFunctionality

 Core functionality is realized by analyzing Python code with AST to obtain structural

information. The code is analyzed statically, and GPT-4 is asked with this information to

produce suggestions [11]. These suggestions are presented in the IDE or VCS interface in a

formatted manner for review by developers.

4.ImplementingUserInterface

 The user interface is embedded within IDEs such as VS Code or PyCharm through

plugins or extensions. It presents GPT-4 suggestions contextually, emphasizing problems and

improvements within the code editor. The interface is made to be clear and easy to use,

enabling rapid actions like accepting or ignoring suggestions.

1. TestingandDebugging

 Testing includes unit tests for every module to ensure the correctness of code parsing,

analysis, and GPT-4 responses [9,10]. Debugging is facilitated by logging mechanisms and

error tracking tools to detect and fix problems effectively. Continuous integration tools

automate testing to ensure code quality during development.

2.Deployment

Deployment entails bundling the application with its dependencies using tools such as

Docker to ensure consistency of environments. The assistant is bundled within IDEs or VCS

platforms via plugins or extensions. It is hosted on a secure cloud or server platform, providing

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 04, APR, 2025

ISSN No: 2250-3676 www.ijesat.com Page | 271

stable API access and scalability.

2. ContinuousImprovement

Continual enhancement is realized through the gathering of user feedback and suggestion

accuracy analysis to optimize GPT-4 prompts and logic. Periodic updates of static analysis

tools and code patterns maintain compatibility with changing Python standards.Monitoring

system performance optimizes response times and enhances overall user experience.

Diagrams: Fig1:

Fig2:

Fig3:

Fig4:

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 04, APR, 2025

ISSN No: 2250-3676 www.ijesat.com Page | 272

Outputs:

Conclusion

The GPT-4 Code Review Assistant Powered by AI – Applied GPT-4 to offer

improvements in the creation of Python code. The project showcases how AI, particularly

GPT4, can change code review for the better. Through automation, it saves developers from

spending their time identifying bugs, code quality issues, and style discrepancies. The

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 25 Issue 04, APR, 2025

ISSN No: 2250-3676 www.ijesat.com Page | 273

integration of GPT-4 with the AST of Python and other static analysis tools gives a thorough

analysis, which produces more resilient and easier-to-maintain code. Further, the fact that this

assistant can be integrated with current development processes through IDEs and version

control systems guarantees effortless adoption. This technology is an improvement step

towards more efficient and reliable software development, which eventually results in quicker

development cycles and better-quality software.

FutureEnhancement

Future improvements for an AI-based Python code review tool based on GPT-4 are

focused on further developing its abilities and integration. These include deeper semantic

analysis to better detect bugs, automated code refactoring recommendation, and improved

security vulnerability detection. Integration with even more varied development tools and

platforms, as well as customized code style enforcement, will enhance ease of use. Continuous

training via user input and model finetuning enables adaptation to certain coding styles and

project needs, and support for multiple programming languages extends its usage.

Reference

1. Lin, J., & Chen, K. (2022). AI-driven software quality assurance: Trends and

challenges. Journal of Software Engineering, 35(4), 123-140.

2. Zhang, Y., & Li, P. (2021). Machine learning applications in automated code review.

IEEE Transactions on Software Engineering, 47(8), 2005-2021.

3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei,

D. (2023). Language models are few-shot learners. OpenAI Research.

4. OpenAI. (2024). GPT-4 Technical Report. Retrieved from

https://openai.com/research/gpt-4

5. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ...

&Polosukhin, I. (2017). Attention is all you need. NeurIPS, 30.

6. Ray, B., Hellendoorn, V. J., Godhane, S., Tu, Y., Bacchelli, A., &Devanbu, P. (2021).

On the “Naturalness” of buggy code. ACM Transactions on Software Engineering,

40(2), 1-27.

7. Kim, D., Nam, J., Song, J., & Kim, S. (2020). Learning to detect software

vulnerabilities with code representation learning. IEEE Transactions on Dependable and

Secure Computing, 18(4), 1342-1358.

8. Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K., & Lopes, C. V. (2022).

BigCloneBench: A large-scale dataset for code clone detection. Empirical Software

Engineering, 27(3), 1124- 1156.

9. Allamanis, M., Peng, H., & Sutton, C. (2018). A convolutional attention network for

extreme summarization of source code. International Conference on Machine Learning

(ICML).

10. Johnson, R., & Phillips, S. (2019). Deep learning for detecting anti-patterns in software

development. IEEE Software, 36(5), 45-51.

11. B.Lalitha Bhavani, Best Congestion routing in networks International conference on

Advances in computer science, Engineering and communications (ICACEC)

International 2016 PP. 6-9.

12. OWASP Foundation. (2024). OWASP Top 10 Security Risks. Retrieved from

https://owasp.org/www-project-top-ten/

13. Hindle, A., Barr, E. T., Su, Z., Gabel, M., &Devanbu, P. (2016). On the naturalness of

software. Communications of the ACM, 59(5), 122-131.

14. Gupta, R., Singh, A., & Kumar, P. (2023). Optimizing software performance with AI-

powered refactoring. ACM Transactions on Software Engineering, 49(1), 78-96

http://www.ijesat.com/
https://openai.com/research/gpt-4
https://owasp.org/www-project-top-ten/

	AI-Powered Code Review Assistant with GPT-4–Used GPT-4 to suggest improvements in Python code
	A. Vamsi1 B. LalithaBhavani2, B. DileepKumar3, B. Prasad4, A. Meghana5
	Abstract
	Recent breakthroughs in artificial intelligence, and more specifically large language models like GPT-4, have made powerful uses in software development possible, such as automated code review. GPT-4, created by OpenAI, exhibits a high-level ability i...
	examine code in context and suggest not just syntax corrections but also improvements in logic, performance, and coding standards. Research also points to the value of GPT-4 in producing rationales for its suggestions so that developers can see how an...
	Code review and security are issues for software development teams because of slow, labor-intensive manual checks and static code tools without contextual intelligence. An AI code review assistant with GPT-4 can fill this void by giving context-aware,...
	1. ProposedSystem
	The system suggested is an AI-driven Code Review Assistant based on GPT-4 to enhance Python code review. It gives real-time, context-specific feedback, detecting errors and vulnerabilities in real time. Unlike static analysis tools, it provides contex...
	AlgorithmsUsedintheProposed System

	Technologies
	1. GPT-4astheCoreIntelligence
	The AI-Powered Code Review Assistant leverages GPT-4 as its core intelligence to analyze and enhance Python code. GPT-4 suggests improvements in code quality, readability, and performance based on best practices. It acts as a smart reviewer, offering ...
	GPT-4(OpenAIAPI) Used as the core intelligence to understand and review Python code. It provides context-aware suggestions for improving code readability, logic, and performance.
	Python The primary programming language used for both the code being analyzed and the development of the assistant itself due to its simplicity and ecosystem support.
	pylint&flake8 Static code analysis tools used to catch syntax errors, PEP 8 violations, and common coding issues before passing the code to GPT-4 for deeper insights.
	Gradio Provides a simple and interactive web interface for users to upload code, view GPT-4's feedback, and interact with suggestions in real time.
	Mat plot lib & Sea born Visualization libraries used to display code quality metrics, issue frequencies, and improvements over time in an intuitive and graphical format.
	GitHubAPI Integrates GPT-4's suggestions directly into pull requests, enabling seamless adoption into existing developer workflows and collaboration platforms.
	Pandas Utilized for data handling and analysis of code metrics, issue logs, and user feedback to refine the review process.
	Streamlit(optionalalternative) Can be used to build a more dashboard-like interface for tracking suggestions, performance metrics, and system updates.
	2.Python Code Parsing and Abstract Syntax Trees
	Python's built-in module ast is responsible for parsing Python source code into an Abstract Syntax Tree (AST). An AST represents the structure of the code as a hierarchical tree, which is simpler to analyze and interpret with AI.
	3.CodeAnalysisandImprovementLogic
	2. User Interface and Feedback Presentation

	Modules
	A GPT-4-powered AI code review assistant comprehensively knows the structure and meaning of Python code to detect potential issues. It then recommends enhancements that include style, performance, security, and maintainability, as well as assists in t...
	1.Code Analysis and Understanding
	Code analysis encompasses analyzing a program's structure, logic, and performance to look for problems and enhancements. Analysis optimizes efficiency, readability, and security. Through knowledge of the code, developers are better able to diagnose ...
	2.Suggesting Improvements
	3.InteractionandFeedback

	Feedback and interaction in AI-driven code review tools are through a dynamic process where real-time suggestions and improvements are given to developers on their code. The assistant reads the code, marks areas that can be optimized or improved for s...
	SoftwareDesign
	1. Modular Architecture
	The modular design of an AI-powered code review system separates functionality into separate components to improve maintainability and scalability. Each module processes specific functions, like GPT-4
	API integration, code parsing, static analysis, and suggestion generation. This organization facilitates easy updates, debugging, and improvements without interfering with other aspects of the system. It also provides flexibility, allowing for the a...
	APIDesignand Interfaces

	The API architecture of an AI-driven Python code review tool emphasizes smooth integration across a range of IDEs and VCS systems through standardized data formats for exchange. Endpoints for submitting code, getting suggestions, and error reporting a...
	Implementation
	The deployment includes the integration of the GPT-4 API with Python code parsing modules based on Abstract Syntax Trees (AST). Static analysis plugins are included to identify problems, while GPT-4 produces improvement recommendations based on prom...
	1.Setting up the Development Environment
	Install Python with necessary libraries such as openai, ast, and pylint or flake8 for code inspection. Install an IDE such as VS Code or PyCharm with appropriate extensions and GPT-4 support. Handle API keys securely and utilize Git for version cont...
	2.ImplementingtheModularArchitecture
	The modular design is achieved by dividing components into separate modules like code parser, GPT-4 handler, static analyzer, and suggestion engine. They communicate through an established interface so that it is flexible and maintainable. This form...
	3.ImplementingCoreFunctionality
	Core functionality is realized by analyzing Python code with AST to obtain structural information. The code is analyzed statically, and GPT-4 is asked with this information to produce suggestions [11]. These suggestions are presented in the IDE or V...
	4.ImplementingUserInterface
	The user interface is embedded within IDEs such as VS Code or PyCharm through plugins or extensions. It presents GPT-4 suggestions contextually, emphasizing problems and improvements within the code editor. The interface is made to be clear and easy...
	1. TestingandDebugging
	Testing includes unit tests for every module to ensure the correctness of code parsing, analysis, and GPT-4 responses [9,10]. Debugging is facilitated by logging mechanisms and error tracking tools to detect and fix problems effectively. Continuous ...
	2.Deployment
	2. ContinuousImprovement

	Conclusion
	The GPT-4 Code Review Assistant Powered by AI – Applied GPT-4 to offer improvements in the creation of Python code. The project showcases how AI, particularly GPT4, can change code review for the better. Through automation, it saves developers from sp...
	FutureEnhancement
	Future improvements for an AI-based Python code review tool based on GPT-4 are focused on further developing its abilities and integration. These include deeper semantic analysis to better detect bugs, automated code refactoring recommendation, and i...
	Reference

